Infinity Scrapers

This is the summary of six fastest growing functions I built, using existing fast growing functions, nested ordinals and notation ↥ . Enjoy!

Part I: Nest Ordinals with Up Arrows

1.1- For ordinals ɑ, β, γ, δ and κ; positive integers a, b, c and d:
  1. The basic form is a↑ɑb and always expand from right to left.
  2. β↑γ# = βγ# (γ# denotes expressions of γ expansion in +, * and ^), e.g.
    1. β↑(γ+1) = βγ+1
    2. β↑(γ2+γ) = βγ2 = βγ2γ.
  3. β↑c+1b = β↑cβ↑c ... β↑cβ (with b copies of β).
  4. a↑ɑ+1b = a↑ɑa↑ɑ... a↑ɑa (with b copies of a's).
  5. β↑ɑ+1b = β↑ɑβ↑ɑ... β↑ɑβ (with b copies of β's).
  6. a↑β↑ɑγ+1b = a↑ ...(((β↑ɑγ)↑ɑγ)↑ɑγ)... b (with b copies of ↑ɑγ 's).
  7. a↑κ↑δβ↑ɑγ+1b = a↑κ↑δ ...(((β↑ɑγ)↑ɑγ)↑ɑγ)... b (with b copies of ↑ɑγ 's).
  8. All other rules shall follow the rules of Up Arrow and the rules of ordinal collapsing.
  9. Define T(δ,d) = ...δ↑δ↑δδδ... (with d floors; both δ and d are user-defined).

Examples:

  1. 2↑ω3 = 2↑33 = ...
  2. 2↑ω+13 = 2↑ω(2↑ω2) = 2↑ω(2↑22) = 2↑ω4 = 2↑44 = ...
  3. 2↑ω↑ωω3 = 2 ↑ω↑ω 3 3 = 2 ↑ω↑3 3 3 = 2 ↑ω↑2ω↑2ω 3 = ...
  4. 2↑ω↑ωω+13 = 2↑ ...(((ω↑ωω)↑ωω)↑ωω)... 3 = ...
  5. 2↑ω↑ω↑ω+1ωω3 = 2↑ω↑ω↑ω+1333 = 2↑ω↑ω↑ωω↑ωω33 ...
  6. 2↑ε03 = 2↑ωωω3 = ...
  7. 2↑T(ε0,ω)3 = 2↑T(ε0,3)3 = 2↑ε0ε0ε0 ε0 ε0 3 = ...

Part II: Nest Ordinals with CEN

2.1- For ordinals ɑ, β and δ, positive integer a:
  1. Assign {CEN} as any sumbols from CEN (Cascading e-Notation of Sbiis Saibian), i.e. #, #^#, #^#*#, &(1), etc.
  2. ɑ{CEN}β is a nested ordinal.
  3. Expand {CEN} when there is a positive integer at its right; expand ordinals from right to left, e.g.
    1. ɑ#a = ɑɑ..ɑɑ (with a floors).
    2. ɑ#β#a = ɑ#(ɑ#(...(ɑ#(ɑ#β)...)) (with a copies of ɑ's).
    3. ɑ##a = ɑ#ɑ#...ɑ#ɑ (with a copies of ɑ's).
  4. ɑ{CEN}β+1 = ... (((ɑ{CEN}β){CEN}β){CEN}β) ...
  5. κ{CEN}ɑ{CEN}β+1 = κ{CEN}(...(((ɑ{CEN}β){CEN}β){CEN}β)...)
  6. All other rules shall follow the rules of CEN and the rules of ordinal collapsing.
  7. Define nested ordinal U(γ,δ) = γ&(1)δ = γ{{{...{{{#,#+1,1,2},#+1,1,2},#+1,1,2}...},#+1,1,2},#+1,1,2}δ; and U(γ,γ) = U(γ).

Examples:

  1. 2↑ω#ω3 = 2↑ω#33 = 2↑ωωω3 = ...
  2. 2↑ω#^#ω+13 = 2↑(((ω#^#ω)#^#ω)#^#ω)3 = ...

Part III: ↥ Notation for Functions

3.1- For positive integers k and n, the notation is right-associative, i.e. it's expanded from right to left.
  1. Define positive integer function g(n).
  2. g(ω)↥n = gn(n).
  3. g(ω)↥k+1n = g(ω)↥kg(ω)↥k ... g(ω)↥kg(n).

Examples:

  1. Define t(n) = g(ω)↥ng(n) and g(n) = n+1, then 
    1. t(2) = g(ω)↥2g(2) 
    2. = g(ω)↥2
    3. = g(ω)↥g(ω)↥g(3) 
    4. = g(ω)↥g(ω)↥4 
    5. = g(ω)↥g4(4) 
    6. = g(ω)↥g(g(g(g(4)))) 
    7. = g(ω)↥8
    8. = 16

Part IV: ↥ Notation & Ordinals

4.1- Combine Part I, II and III to give very powerful ↥ notation.

Examples:

  1. Define t(n) = g(ω)↥ω↑↑ωg(n) and g(n) = n+1, then
    1. t(1) = g(ω)↥ω↑↑ωg(1)
    2. = g(ω)↥ω↑↑ω2
    3. = g(ω)↥ω↑↑22
    4. = g(ω)↥ωω2
    5. = g(ω)↥ω+22
    6. = g(ω)↥ω+1g(2)
    7. = g(ω)↥ω+13
    8. = g(ω)↥ωg(ω)↥ωg(3)
    9. = g(ω)↥ωg(ω)↥44
    10. = g(ω)↥ωg(ω)↥3g(ω)↥3g(ω)↥3g(4) = ...
  2. Define t(n) = g(ω)↥ω##ωg(n) and g(n) = n+1, then
    1. t(2) = g(ω)↥ω##ωg(2)
    2. = g(ω)↥ω##33
    3. = g(ω)↥ω#ω#ω3
    4. = g(ω)↥ω#ω#33
    5. = g(ω)↥ω#ωωω3
    6. = g(ω)↥ω#ωω33 = ...

Part V: Box Function & Ordinals

5.1- Box function [a](n) is another way of expressing sequential function fa(n).
5.2- Define [a](n) then follow these rules:
  1. [ɑ+1](n) = [ɑ]([ɑ](...[ɑ]([ɑ](n))...)) (with n copies of [ɑ]'s). 
  2. [ɑ↑↑...↑↑β+1](n) = [... (((ɑ↑↑...↑↑β)↑↑...↑↑β)↑↑...↑↑β) ...](n) (with n copies of ↑↑...↑↑β 's).
  3. [κ↑↑...↑↑ɑ↑↑...↑↑β+1](n) = [κ↑↑...↑↑ ...(((ɑ↑↑...↑↑β)↑↑...↑↑β)↑↑...↑↑β)...](n) (with n copies of ↑↑...↑↑β 's).
  4. [ɑ{CEN}β+1](n) = [ ...(((ɑ{CEN}β){CEN}β){CEN}β)... ](n) (with n copies of {CEN}β 's).
  5. [κ{CEN}ɑ{CEN}β+1](n) = [κ{CEN} ...(((ɑ{CEN}β){CEN}β){CEN}β)...](n) (with n copies of {CEN}β 's).
  6. All other rules shall follow ordinal expansion rules.

Examples:

  1. Define [0](n) = n+1 and [k+1](n) = [k]n(n), then
    1. [ω+1](2)
      1. = [ω]([ω](2))
      2. = [ω]([2](2))
      3. = [ω](8)
      4. = [8](8) = ...
    2. [ω#^#ω+1](2)
      1. = [((ω#^#ω)#^#ω)](2)
      2. = [((ω#^#ω)#^#2)](2) = ...

Part VI: Ton Function Family

6.1- Now these are real Infinity Scrapers:

mini ton function

  1. mton(n) = F8(SCG(⍵))↥AF8(SCG(n)), where A = T(Σ, F8(SCG(⍵))).

ton function

  1. ton(n) = [A](⍵)↥A[A](n), where A = T(B, [B](⍵)).
  2. [a+1](n) = [a](⍵)↥B[a](n), where B = T(C, [a](⍵)).
  3. [0](n) = F8(SCG(⍵))↥CF8(SCG(n)), where C = T(Σ, F8(SCG(⍵))).

Ton function

  1. Ton(n) = [A](⍵)↥A[A](n), where A = T(B(⍵), [B(⍵)](⍵)).
  2. [a+1](n) = [a](⍵)↥B(⍵)[a](n), where
    1. B(b+1) = T(B(b), [a](⍵)); and
    2. B(0) = T(C, [a](⍵)).
  3. [0](n) = F8(SCG(⍵))↥CF8(SCG(n)), where C = T(Σ, F8(SCG(⍵))).

TON function

  1. TON(n) = [A(⍵)](⍵)↥A(⍵)[A(⍵)](n), where 
    1. A(a+1) = T(A(a), [B(⍵)](⍵)); and
    2. A(0) = T(B(⍵), [B(⍵)](⍵)).
  2. [a+1](n) = [a](⍵)↥B(⍵)[a](n), where
    1. B(b+1) = T(B(b), [a](⍵)); and
    2. B(0) = T(C(⍵), [a](⍵)).
  3. [0](n) = F8(SCG(⍵))↥C(⍵)F8(SCG(n)), where
    1. C(c+1) = T(C(c), F8(SCG(⍵))); and
    2. C(0) = T(Σ, F8(SCG(⍵))).

Mega TON function

  1. MTON(n) = [A(⍵)](⍵)↥U(A(⍵))[A(⍵)](n), where
    1. A(a+1) = U(A(a)); and
    2. A(0) = T(B(⍵), [B(⍵)](⍵)).
  2. [a+1](n) = [a](⍵)↥U(B(⍵))[a](n), where
    1. B(b+1) = U(B(b)); and
    2. B(0) = T(C(⍵), [a](⍵)).
  3. [0](n) = F8(SCG(⍵))↥U(C(⍵))F8(SCG(n)), where
    1. C(c+1) = U(C(c)); and
    2. C(0) = T(Σ, F8(SCG(⍵))).

Giga TON function

2.1- {ɑ}(n) shall follow expansion rules of Box Function in Part V above, where ɑ denotes any ordinal or nested ordinals.

2.2- From here, Giga TON can be defined as:
  1. GTON(n) = [A(⍵)](⍵)↥U(A(⍵))[A(⍵)](n), where
    1. A(a+1) = U(A(a)); and
    2. A(0) = T(B(⍵), [B(⍵)](⍵)).
  2. [a+1](n) = [a](⍵)↥U(B(⍵))[a](n), where
    1. B(b+1) = U(B(b)); and
    2. B(0) = T(C(⍵), [a](⍵)).
  3. [0](n) = {U(C(ω))}(SCG(⍵))↥U(C(⍵)){U(C(ω))}(SCG(n)), where
    1. C(c+1) = U(C(c)); and
    2. C(0) = T(Σ, {Σ}(SCG(⍵))).

Note:

  1. As ... {2}(n) >> {1}(n) >> {0}(n) > MTON(n), GTON(n) is at totally different league from the other five members of Ton Family.

Tera TON function

3.1- To go a step further from GTON, ☷b☷(n) is defined as:
  1. ☷0☷(n) ≈ L...U(U(U(Σ)))...(n) (derived from LNG(n), with n of U's); and
  2. ☷b+1☷(n) ≈ L...U(U(U(Σ)))...(n) (derived from ☷b☷(n), with n of U's).
3.2- From here, Tera TON can be defined as:
  1. TTON(n) = [A(⍵)](⍵)↥U(A(⍵))[A(⍵)](n), where
    1. A(a+1) = U(A(a)); and
    2. A(0) = T(B(⍵), [B(⍵)](⍵)).
  2. [a+1](n) = [a](⍵)↥U(B(⍵))[a](n), where
    1. B(b+1) = U(B(b)); and
    2. B(0) = T(C(⍵), [a](⍵)).
  3. [0](n) = ☷U(C(ω))☷(SCG(⍵))↥U(C(⍵))☷U(C(ω))☷(SCG(n)), where
    1. C(c+1) = U(C(c)); and
    2. C(0) = T(Σ, ☷Σ☷(SCG(⍵))).

Peta TON function

3.1- To go a step further from TTON, ◩b⬔(n) is defined as (refer to Part VI here):
  1. ◩0⬔(n) ≈ LUC(C(C(...C(𝛀n2,0)...,0),0))(n) (derived from LNG(n), with n of 0's); and
  2. ◩b+1⬔(n) ≈ LUC(C(C(...C(𝛀n2,0)...,0),0))(n) (derived from ◩b⬔(n), with n of 0's).
3.2- From here, Peta TON can be defined as:
  1. PTON(n) = [A(⍵)](⍵)↥U(A(⍵))[A(⍵)](n), where
    1. A(a+1) = U(A(a)); and
    2. A(0) = T(B(⍵), [B(⍵)](⍵)).
  2. [a+1](n) = [a](⍵)↥U(B(⍵))[a](n), where
    1. B(b+1) = U(B(b)); and
    2. B(0) = T(C(⍵), [a](⍵)).
  3. [0](n) = ◩U(C(ω))⬔(SCG(⍵))↥U(C(⍵))◩U(C(ω))⬔(SCG(n)), where
    1. C(c+1) = U(C(c)); and
    2. C(0) = T(Σ, ◩Σ⬔(SCG(⍵))).

Exa TON function

Please refer to here.

Comments

Popular posts from this blog

Bitcoin: A Reserve Better Than Gold

致比特幣人

Power Tower 3 and Up Arrows