Infinity Scrapers
This is the summary of six fastest growing functions I built, using existing fast growing functions, nested ordinals and notation ↥ . Enjoy!
Part I: Nest Ordinals with Up Arrows
1.1- For ordinals ɑ, β, γ, δ and κ; positive integers a, b, c and d:- The basic form is a↑ɑb and always expand from right to left.
- β↑γ# = βγ# (γ# denotes expressions of γ expansion in +, * and ^), e.g.
- β↑(γ+1) = βγ+1.
- β↑(γ2+γ) = βγ2+γ = βγ2*βγ.
- β↑c+1b = β↑cβ↑c ... β↑cβ (with b copies of β).
- a↑ɑ+1b = a↑ɑa↑ɑ... a↑ɑa (with b copies of a's).
- β↑ɑ+1b = β↑ɑβ↑ɑ... β↑ɑβ (with b copies of β's).
- a↑β↑ɑγ+1b = a↑ ...(((β↑ɑγ)↑ɑγ)↑ɑγ)... b (with b copies of ↑ɑγ 's).
- a↑κ↑δβ↑ɑγ+1b = a↑κ↑δ ...(((β↑ɑγ)↑ɑγ)↑ɑγ)... b (with b copies of ↑ɑγ 's).
- All other rules shall follow the rules of Up Arrow and the rules of ordinal collapsing.
- Define T(δ,d) = ...δ↑δ↑δδδ... (with d floors; both δ and d are user-defined).
Examples:
- 2↑ω3 = 2↑33 = ...
- 2↑ω+13 = 2↑ω(2↑ω2) = 2↑ω(2↑22) = 2↑ω4 = 2↑44 = ...
- 2↑ω↑ωω3 = 2 ↑ω↑ω 3 3 = 2 ↑ω↑3 3 3 = 2 ↑ω↑2ω↑2ω 3 = ...
- 2↑ω↑ωω+13 = 2↑ ...(((ω↑ωω)↑ωω)↑ωω)... 3 = ...
- 2↑ω↑ω↑ω+1ωω3 = 2↑ω↑ω↑ω+1333 = 2↑ω↑ω↑ωω↑ωω33 ...
- 2↑ε03 = 2↑ωωω3 = ...
- 2↑T(ε0,ω)3 = 2↑T(ε0,3)3 = 2↑ε0↑ε0↑ε0 ε0 ε0 3 = ...
Part II: Nest Ordinals with CEN
2.1- For ordinals ɑ, β and δ, positive integer a:
- Assign {CEN} as any sumbols from CEN (Cascading e-Notation of Sbiis Saibian), i.e. #, #^#, #^#*#, &(1), etc.
- ɑ{CEN}β is a nested ordinal.
- Expand {CEN} when there is a positive integer at its right; expand ordinals from right to left, e.g.
- ɑ#a = ɑɑ..ɑɑ (with a floors).
- ɑ#β#a = ɑ#(ɑ#(...(ɑ#(ɑ#β)...)) (with a copies of ɑ's).
- ɑ##a = ɑ#ɑ#...ɑ#ɑ (with a copies of ɑ's).
- ɑ{CEN}β+1 = ... (((ɑ{CEN}β){CEN}β){CEN}β) ...
- κ{CEN}ɑ{CEN}β+1 = κ{CEN}(...(((ɑ{CEN}β){CEN}β){CEN}β)...)
- All other rules shall follow the rules of CEN and the rules of ordinal collapsing.
- Define nested ordinal U(γ,δ) = γ&(1)δ = γ{{{...{{{#,#+1,1,2},#+1,1,2},#+1,1,2}...},#+1,1,2},#+1,1,2}δ; and U(γ,γ) = U(γ).
Examples:
- 2↑ω#ω3 = 2↑ω#33 = 2↑ωωω3 = ...
- 2↑ω#^#ω+13 = 2↑(((ω#^#ω)#^#ω)#^#ω)3 = ...
Part III: ↥ Notation for Functions
3.1- For positive integers k and n, the notation is right-associative, i.e. it's expanded from right to left.
- Define positive integer function g(n).
- g(ω)↥n = gn(n).
- g(ω)↥k+1n = g(ω)↥kg(ω)↥k ... g(ω)↥kg(n).
Examples:
- Define t(n) = g(ω)↥ng(n) and g(n) = n+1, then
- t(2) = g(ω)↥2g(2)
- = g(ω)↥23
- = g(ω)↥g(ω)↥g(3)
- = g(ω)↥g(ω)↥4
- = g(ω)↥g4(4)
- = g(ω)↥g(g(g(g(4))))
- = g(ω)↥8
- = 16
Part IV: ↥ Notation & Ordinals
4.1- Combine Part I, II and III to give very powerful ↥ notation.
Examples:
- Define t(n) = g(ω)↥ω↑↑ωg(n) and g(n) = n+1, then
- t(1) = g(ω)↥ω↑↑ωg(1)
- = g(ω)↥ω↑↑ω2
- = g(ω)↥ω↑↑22
- = g(ω)↥ωω2
- = g(ω)↥ω+22
- = g(ω)↥ω+1g(2)
- = g(ω)↥ω+13
- = g(ω)↥ωg(ω)↥ωg(3)
- = g(ω)↥ωg(ω)↥44
- = g(ω)↥ωg(ω)↥3g(ω)↥3g(ω)↥3g(4) = ...
- Define t(n) = g(ω)↥ω##ωg(n) and g(n) = n+1, then
- t(2) = g(ω)↥ω##ωg(2)
- = g(ω)↥ω##33
- = g(ω)↥ω#ω#ω3
- = g(ω)↥ω#ω#33
- = g(ω)↥ω#ωωω3
- = g(ω)↥ω#ωω33 = ...
Part V: Box Function & Ordinals
5.1- Box function [a](n) is another way of expressing sequential function fa(n).
5.2- Define [a](n) then follow these rules:
- [ɑ+1](n) = [ɑ]([ɑ](...[ɑ]([ɑ](n))...)) (with n copies of [ɑ]'s).
- [ɑ↑↑...↑↑β+1](n) = [... (((ɑ↑↑...↑↑β)↑↑...↑↑β)↑↑...↑↑β) ...](n) (with n copies of ↑↑...↑↑β 's).
- [κ↑↑...↑↑ɑ↑↑...↑↑β+1](n) = [κ↑↑...↑↑ ...(((ɑ↑↑...↑↑β)↑↑...↑↑β)↑↑...↑↑β)...](n) (with n copies of ↑↑...↑↑β 's).
- [ɑ{CEN}β+1](n) = [ ...(((ɑ{CEN}β){CEN}β){CEN}β)... ](n) (with n copies of {CEN}β 's).
- [κ{CEN}ɑ{CEN}β+1](n) = [κ{CEN} ...(((ɑ{CEN}β){CEN}β){CEN}β)...](n) (with n copies of {CEN}β 's).
- All other rules shall follow ordinal expansion rules.
Examples:
- Define [0](n) = n+1 and [k+1](n) = [k]n(n), then
- [ω+1](2)
- = [ω]([ω](2))
- = [ω]([2](2))
- = [ω](8)
- = [8](8) = ...
- [ω#^#ω+1](2)
- = [((ω#^#ω)#^#ω)](2)
- = [((ω#^#ω)#^#2)](2) = ...
Part VI: Ton Function Family
6.1- Now these are real Infinity Scrapers:
mini ton function
- mton(n) = F8(SCG(⍵))↥AF8(SCG(n)), where A = T(Σ, F8(SCG(⍵))).
ton function
- ton(n) = [A](⍵)↥A[A](n), where A = T(B, [B](⍵)).
- [a+1](n) = [a](⍵)↥B[a](n), where B = T(C, [a](⍵)).
- [0](n) = F8(SCG(⍵))↥CF8(SCG(n)), where C = T(Σ, F8(SCG(⍵))).
Ton function
- Ton(n) = [A](⍵)↥A[A](n), where A = T(B(⍵), [B(⍵)](⍵)).
- [a+1](n) = [a](⍵)↥B(⍵)[a](n), where
- B(b+1) = T(B(b), [a](⍵)); and
- B(0) = T(C, [a](⍵)).
- [0](n) = F8(SCG(⍵))↥CF8(SCG(n)), where C = T(Σ, F8(SCG(⍵))).
TON function
- TON(n) = [A(⍵)](⍵)↥A(⍵)[A(⍵)](n), where
- A(a+1) = T(A(a), [B(⍵)](⍵)); and
- A(0) = T(B(⍵), [B(⍵)](⍵)).
- [a+1](n) = [a](⍵)↥B(⍵)[a](n), where
- B(b+1) = T(B(b), [a](⍵)); and
- B(0) = T(C(⍵), [a](⍵)).
- [0](n) = F8(SCG(⍵))↥C(⍵)F8(SCG(n)), where
- C(c+1) = T(C(c), F8(SCG(⍵))); and
- C(0) = T(Σ, F8(SCG(⍵))).
Mega TON function
- MTON(n) = [A(⍵)](⍵)↥U(A(⍵))[A(⍵)](n), where
- A(a+1) = U(A(a)); and
- A(0) = T(B(⍵), [B(⍵)](⍵)).
- [a+1](n) = [a](⍵)↥U(B(⍵))[a](n), where
- B(b+1) = U(B(b)); and
- B(0) = T(C(⍵), [a](⍵)).
- [0](n) = F8(SCG(⍵))↥U(C(⍵))F8(SCG(n)), where
- C(c+1) = U(C(c)); and
- C(0) = T(Σ, F8(SCG(⍵))).
Giga TON function
2.1- {ɑ}(n) shall follow expansion rules of Box Function in Part V above, where ɑ denotes any ordinal or nested ordinals.2.2- From here, Giga TON can be defined as:
- GTON(n) = [A(⍵)](⍵)↥U(A(⍵))[A(⍵)](n), where
- A(a+1) = U(A(a)); and
- A(0) = T(B(⍵), [B(⍵)](⍵)).
- [a+1](n) = [a](⍵)↥U(B(⍵))[a](n), where
- B(b+1) = U(B(b)); and
- B(0) = T(C(⍵), [a](⍵)).
- [0](n) = {U(C(ω))}(SCG(⍵))↥U(C(⍵)){U(C(ω))}(SCG(n)), where
- C(c+1) = U(C(c)); and
- C(0) = T(Σ, {Σ}(SCG(⍵))).
Note:
- As ... {2}(n) >> {1}(n) >> {0}(n) > MTON(n), GTON(n) is at totally different league from the other five members of Ton Family.
Tera TON function
3.1- To go a step further from GTON, ☷b☷(n) is defined as:- ☷0☷(n) ≈ L...U(U(U(Σ)))...(n) (derived from LNG(n), with n of U's); and
- ☷b+1☷(n) ≈ L...U(U(U(Σ)))...(n) (derived from ☷b☷(n), with n of U's).
- TTON(n) = [A(⍵)](⍵)↥U(A(⍵))[A(⍵)](n), where
- A(a+1) = U(A(a)); and
- A(0) = T(B(⍵), [B(⍵)](⍵)).
- [a+1](n) = [a](⍵)↥U(B(⍵))[a](n), where
- B(b+1) = U(B(b)); and
- B(0) = T(C(⍵), [a](⍵)).
- [0](n) = ☷U(C(ω))☷(SCG(⍵))↥U(C(⍵))☷U(C(ω))☷(SCG(n)), where
- C(c+1) = U(C(c)); and
- C(0) = T(Σ, ☷Σ☷(SCG(⍵))).
Peta TON function
3.1- To go a step further from TTON, ◩b⬔(n) is defined as (refer to Part VI here):- ◩0⬔(n) ≈ LUC(C(C(...C(𝛀n2,0)...,0),0))(n) (derived from LNG(n), with n of 0's); and
- ◩b+1⬔(n) ≈ LUC(C(C(...C(𝛀n2,0)...,0),0))(n) (derived from ◩b⬔(n), with n of 0's).
- PTON(n) = [A(⍵)](⍵)↥U(A(⍵))[A(⍵)](n), where
- A(a+1) = U(A(a)); and
- A(0) = T(B(⍵), [B(⍵)](⍵)).
- [a+1](n) = [a](⍵)↥U(B(⍵))[a](n), where
- B(b+1) = U(B(b)); and
- B(0) = T(C(⍵), [a](⍵)).
- [0](n) = ◩U(C(ω))⬔(SCG(⍵))↥U(C(⍵))◩U(C(ω))⬔(SCG(n)), where
- C(c+1) = U(C(c)); and
- C(0) = T(Σ, ◩Σ⬔(SCG(⍵))).
Exa TON function
Please refer to here.
Comments
Post a Comment