Power Tower 3 and Up Arrows

3↑3 or 3↑13

= 33
= 3×3×3
= 27

3↑↑3 or 3↑23

= 3↑3↑3
= 333 , with 3 floors of 3's
= 327
= 7,625,597,484,987

3↑↑↑3 or 3↑33

= 3↑↑3↑↑3
= 3↑↑(333 )
= 3↑3↑ ... 3↑3, with 333 of 3's
= 33..33 } 333 floors of 3's

= 33..33 } 7,625,597,484,987 floors of 3's

3↑↑↑↑3 or 3↑43 (= G(1), first layer of Graham's number)

= 3↑↑↑3↑↑↑3
= 3↑↑3↑↑ ... 3↑↑3 , with 3↑↑↑3 or 3↑33 of 3's
= 33..33 } 33..33 } ... 33..33 } 33..33 } 333 , with 3↑↑↑3 or 3↑33 of power tower 33..33 's

3↑↑↑↑↑3 or 3↑53

= 3↑↑↑↑3↑↑↑↑3
= 3↑↑↑3↑↑↑ ... 3↑↑↑3, with 3↑↑↑↑3 of 3's
= L1 ⤋ L2 ⤋ L3 ⤋ ... (with L1 of L's), where
  1. L1 = 3↑↑↑↑3; and
  2. L2 = 33..33 } 33..33 } ... 33..33 } 33..33 } 333 , with L1 of power tower 33..33 's;
  3. and so on.
  4. ⤋denotes left value equals numbers of power tower 33..33 at its right.
In graphic form:

33..33 } 33..33 } ... 33..33 } 33..33 } 333 , with 3↑↑↑3 or 3↑33 of power tower 33..33 's
_____________________________/\_____________________________
    /                                                                                                              \    
33..33 33..33 33..33 } 33..33 } ... 33..33 } 33..33 33..33 33..33 } 333
_____________________________/\_____________________________
    /                                                                                                              \  
33..33 33..33 33..33 } 33..33 } ... 33..33 } 33..33 33..33 33..33 } 333
_____________________________/\_____________________________
    /                                                                                                              \    
33..33 33..33 33..33 } 33..33 } ... 33..33 } 33..33 33..33 33..33 } 333
_____________________________/\_____________________________
    /                                                                                                              \    
33..33 33..33 33..33 } 33..33 } ... 33..33 } 33..33 33..33 33..33 } 333

, with 3↑↑↑↑3 layers of _____________________________/\_____________________________
                                            /                                                                                                              \    
, where number of power tower 33..33's in any layer = value of its upper layer

3↑↑↑↑↑↑3 or 3↑63

= 3↑↑↑↑↑3↑↑↑↑↑3
= 3↑↑↑↑3↑↑↑↑...3↑↑↑↑3, with 3↑↑↑↑↑3 or 3↑53 of 3's
= ≡ ≡ } ≡ } ... ≡ ≡ 3↑53 , with 3↑↑↑↑↑3 or 3↑53 of  's, where  denotes the tower similar to 3↑53 above (with the number of layers of any  equals value of the at its right side)

3↑↑↑↑↑↑↑3 or 3↑73

= 3↑↑↑↑↑↑3↑↑↑↑↑↑3
= 3↑↑↑↑↑3↑↑↑↑↑...3↑↑↑↑↑3, with 3↑↑↑↑↑↑3 or 3↑63 of 3's
= L1 ⤋ L2 ⤋ L3 ⤋ ... (with L1 of L's), where
  1. L1 = 3↑63; and
  2. L2 = ≡ ≡ } ≡ ... ≡ ≡ 3↑53 , with L1 of  's;
  3. and so on.
As you can see, 8 up arrows will be in the form of ≡ ≡ } ≡ ... ≡ ≡ 3↑73; then 9 up arrows will be in the form of L1 ⤋ L2 ⤋ L3 ⤋ ... ; and so on. In short, they are alternating between ≡ ≡ } ≡ ... ≡ ≡ and L1 ⤋ L2 ⤋ L3 ⤋ ...

3↑G(1)3 (= G(2), 2nd layer of Graham's number)

= 3↑↑↑ ... ↑↑↑3, with G(1) of ↑ 's

3↑G(2)3 (= G(3), 3rd layer of Graham's number)

= 3↑↑↑ ... ↑↑↑3, with G(2) of ↑ 's

3↑G(62)3 (= G(63), 63rd layer of Graham's number)

= 3↑↑↑ ... ↑↑↑3, with G(62) of ↑ 's

3↑G(63)3 (= G(64), Graham's number)

= 3↑↑↑ ... ↑↑↑3, with G(63) of ↑ 's

Comments

Post a Comment

Popular posts from this blog

致比特幣人

Bitcoin: A Reserve Better Than Gold